Skip to content

Genera for hermitian lattices

Local genus symbols

Definition 8.3.1 ([Kir16]) Let be a hermitian lattice over and let be a prime ideal of . Let be the largest ideal of over being invariant under the involution of . We suppose that we are given a Jordan decomposition

where the Jordan block is -modular for , for a strictly increasing sequence of integers . In particular, . Then, the local genus symbol of is defined to be:

  • if is good, i.e. non ramified and non dyadic,

where if the determinant (resp. discriminant) of is a norm in , and otherwise, and for all i;

  • if is bad,

where for all i,

Note that we define the scale and the norm of the lattice () defined over the extension of local fields similarly to the ones of , by extending by continuity the sesquilinear form of the ambient space of to the completion. Regarding the determinant (resp. discriminant), it is defined as the determinant of the Gram matrix associated to a basis of relatively to the extension of the sesquilinear form (resp. times the determinant, where is the rank of ).

We call any tuple in a Jordan block of since it corresponds to invariants of a Jordan block of the completion of the lattice at . For any such block , we call respectively the scale, the rank, the determinant class (resp. discriminant class) and the norm of . Note that the norm is necessary only when the prime ideal is bad.

We say that two hermitian lattices and over are in the same local genus at if .

Creation of local genus symbols

There are two ways of creating a local genus symbol for hermitian lattices:

  • either abstractly, by choosing the extension , the prime ideal of , the Jordan blocks data and the type of the 's (either determinant class :det or discriminant class :disc);
   genus(HermLat, E::NumField, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, data::Vector; type::Symbol = :det,
                                                          check::Bool = false)
                                                             -> HermLocalGenus
  • or by constructing the local genus symbol of the completion of a hermitian lattice over at a prime ideal of .
   genus(L::HermLat, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> HermLocalGenus

Examples

We will construct two examples for the rest of this section. Note that the prime chosen here is bad.

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det)
Local genus symbol for hermitian lattices
  over relative maximal order of Relative number field of degree 2 over number field
  with pseudo-basis
  (1, 1//1 * <1, 1>)
  (b, 1//1 * <1, 1>)
Prime ideal: <2, a>
Jordan blocks (scale, rank, det, norm):
  (0, 1, +, 0)
  (2, 2, -, 1)

julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);


julia> gens = Vector{Hecke.RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];


julia> L = hermitian_lattice(E, gens, gram = D);


julia> g2 = genus(L, p)
Local genus symbol for hermitian lattices
  over relative maximal order of Relative number field of degree 2 over number field
  with pseudo-basis
  (1, 1//1 * <1, 1>)
  (b, 1//1 * <1, 1>)
Prime ideal: <2, a>
Jordan blocks (scale, rank, det, norm):
  (-2, 1, +, -1)
  (2, 2, +, 1)

Attributes

# lengthMethod.

length(g::HermLocalGenus) -> Int

Given a local genus symbol g for hermitian lattices, return the number of Jordan blocks of g.

source

# base_fieldMethod.

base_field(g::HermLocalGenus) -> NumField

Given a local genus symbol g for hermitian lattices over , return E.

source

# primeMethod.

prime(g::HermLocalGenus) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return .

source

Examples

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);


julia> length(g1)
2

julia> base_field(g1)
Relative number field with defining polynomial t^2 - a
  over number field with defining polynomial x^2 - 2
    over rational field

julia> prime(g1)
<2, a>
Norm: 2
Minimum: 2
basis_matrix
[2 0; 0 1]
two normal wrt: 2

Invariants

# scaleMethod.

scale(g::HermLocalGenus, i::Int) -> Int

Given a local genus symbol g for hermitian lattices over at a prime of , return the -valuation of the scale of the ith Jordan block of g, where is a prime ideal of lying over .

source

# scaleMethod.

scale(g::HermLocalGenus) -> AbsSimpleNumFieldOrderFractionalIdeal

Given a local genus symbol g for hermitian lattices over at a prime of , return the scale of the Jordan block of minimum -valuation, where is a prime ideal of lying over .

source

# scalesMethod.

scales(g::HermLocalGenus) -> Vector{Int}

Given a local genus symbol g for hermitian lattices over at a prime of , return the -valuation of the scales of the Jordan blocks of g, where is a prime ideal of lying over .

source

# rankMethod.

rank(g::HermLocalGenus, i::Int) -> Int

Given a local genus symbol g for hermitian lattices, return the rank of the ith Jordan block of g.

source

# rankMethod.

rank(g::HermLocalGenus) -> Int

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return the rank of any hermitian lattice whose -adic completion has local genus symbol g.

source

# ranksMethod.

ranks(g::HermLocalGenus) -> Vector{Int}

Given a local genus symbol g for hermitian lattices, return the ranks of the Jordan blocks of g.

source

# detMethod.

det(g::HermLocalGenus, i::Int) -> Int

Given a local genus symbol g for hermitian lattices over , return the determinant of the ith Jordan block of g.

The returned value is or depending on whether the determinant is a local norm in K.

source

# detMethod.

det(g::HermLocalGenus) -> Int

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return the determinant of a hermitian lattice whose -adic completion has local genus symbol g.

The returned value is or depending on whether the determinant is a local norm in K.

source

# detsMethod.

dets(g::HermLocalGenus) -> Vector{Int}

Given a local genus symbol g for hermitian lattices over , return the determinants of the Jordan blocks of g.

The returned values are or depending on whether the respective determinants are are local norms in K.

source

# discriminantMethod.

discriminant(g::HermLocalGenus, i::Int) -> Int

Given a local genus symbol g for hermitian lattices over , return the discriminant of the ith Jordan block of g.

The returned value is or depending on whether the discriminant is a local norm in K.

source

# discriminantMethod.

discriminant(g::HermLocalGenus) -> Int

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return the discriminant of a hermitian lattice whose -adic completion has local genus symbol g.

The returned value is or depending on whether the discriminant is a local norm in K.

source

# normMethod.

norm(g::HermLocalGenus, i::Int) -> Int

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return the -valuation of the norm of the ith Jordan block of g.

source

# normMethod.

norm(g::HermLocalGenus) -> AbsSimpleNumFieldOrderFractionalIdeal

Return the norm of g, i.e. the norm of any of its representatives.

Given a local genus symbol g of hermitian lattices over at a prime ideal of , it norm is computed as the norm of the Jordan block of minimum -valuation.

source

# normsMethod.

norms(g::HermLocalGenus) -> Vector{Int}

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return the -valuations of the norms of the Jordan blocks of g.

source

Examples

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);


julia> gens = Vector{Hecke.RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];


julia> L = hermitian_lattice(E, gens, gram = D);


julia> g2 = genus(L, p);


julia> scales(g2)
2-element Vector{Int64}:
 -2
  2

julia> ranks(g2)
2-element Vector{Int64}:
 1
 2

julia> dets(g2)
2-element Vector{Int64}:
 1
 1

julia> norms(g2)
2-element Vector{Int64}:
 -1
  1

julia> rank(g2), det(g2), discriminant(g2)
(3, 1, -1)

Predicates

# is_ramifiedMethod.

is_ramified(g::HermLocalGenus) -> Bool

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return whether is ramified in .

source

# is_splitMethod.

is_split(g::HermLocalGenus) -> Bool

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return whether is split in .

source

# is_inertMethod.

is_inert(g::HermLocalGenus) -> Bool

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return whether is inert in .

source

# is_dyadicMethod.

is_dyadic(g::HermLocalGenus) -> Bool

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return whether is dyadic.

source

Examples

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);


julia> is_ramified(g1), is_split(g1), is_inert(g1), is_dyadic(g1)
(true, false, false, true)

Local uniformizer

# uniformizerMethod.

uniformizer(g::HermLocalGenus) -> NumFieldElem

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return a generator for the largest ideal of containing and invariant under the action of the non-trivial involution of E.

source

Example

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);


julia> uniformizer(g1)
-a

Determinant representatives

Let be a local genus symbol for hermitian lattices. Its determinant class, or the determinant class of its Jordan blocks, are given by , depending on whether the determinants are local norms or not. It is possible to get a representative of this determinant class in terms of powers of the uniformizer of .

# det_representativeMethod.

det_representative(g::HermLocalGenus, i::Int) -> NumFieldElem

Given a local genus symbol g for hermitian lattices over , return a representative of the norm class of the determinant of the ith Jordan block of g in .

source

# det_representativeMethod.

det_representative(g::HermLocalGenus) -> NumFieldElem

Given a local genus symbol g for hermitian lattices over , return a representative of the norm class of the determinant of g in .

source

Examples

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);


julia> det_representative(g1)
8*a - 6

julia> det_representative(g1,2)
8*a - 6

Gram matrices

# gram_matrixMethod.

gram_matrix(g::HermLocalGenus, i::Int) -> MatElem

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return a Gram matrix M of the ith Jordan block of g, with coefficients in E. M is such that any hermitian lattice over with Gram matrix M satisfies that the local genus symbol of its completion at is equal to the ith Jordan block of g.

source

# gram_matrixMethod.

gram_matrix(g::HermLocalGenus) -> MatElem

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return a Gram matrix M of g, with coefficients in E.M is such that any hermitian lattice over with Gram matrix M satisfies that the local genus symbol of its completion at is g.

source

Examples

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);


julia> gens = Vector{Hecke.RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];


julia> L = hermitian_lattice(E, gens, gram = D);


julia> g2 = genus(L, p);


julia> gram_matrix(g2)
[-3//2*a - 4   0         0]
[          0   a         a]
[          0   a   4*a + 8]

julia> gram_matrix(g2,1)
[-3//2*a - 4]


Global genus symbols

Let be a hermitian lattice over . Let be the set of all prime ideals of which are bad (ramified or dyadic), which are dividing the scale of or which are dividing the volume of . Let be the set of real infinite places of which split into complex places in . We define the global genus symbol of to be the datum consisting of the local genus symbols of at each prime of and the signatures (i.e. the negative index of inertia) of the Gram matrix of the rational span of at each place in .

Note that prime ideals in which don't ramify correspond to those for which the corresponding completions of are not unimodular.

We say that two lattice and over are in the same genus, if .

Creation of global genus symbols

Similarly, there are two ways of constructing a global genus symbol for hermitian lattices:

  • either abstractly, by choosing the extension , the set of local genus symbols S and the signatures signatures at the places in . Note that this requires the given invariants to satisfy the product formula for Hilbert symbols.
   genus(S::Vector{HermLocalGenus}, signatures) -> HermGenus

Here signatures can be a dictionary with keys the infinite places and values the corresponding signatures, or a collection of tuples of the type (::InfPlc, ::Int);

  • or by constructing the global genus symbol of a given hermitian lattice .
   genus(L::HermLat) -> HermGenus

Examples

As before, we will construct two different global genus symbols for hermitian lattices, which we will use for the rest of this section.

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);


julia> infp = infinite_places(E)
3-element Vector{InfPlc{Hecke.RelSimpleNumField{AbsSimpleNumFieldElem}, RelSimpleNumFieldEmbedding{AbsSimpleNumFieldEmbedding, Hecke.RelSimpleNumField{AbsSimpleNumFieldElem}}}}:
 Infinite place corresponding to (Complex embedding corresponding to root -1.19 of relative number field)
 Infinite place corresponding to (Complex embedding corresponding to root 1.19 of relative number field)
 Infinite place corresponding to (Complex embedding corresponding to root 0.00 + 1.19 * i of relative number field)

julia> SEK = unique([r.base_field_place for r in infp if isreal(r.base_field_place) && !isreal(r)]);
ERROR: type InfPlc has no field base_field_place

julia> length(SEK)
ERROR: UndefVarError: `SEK` not defined

julia> G1 = genus([g1], [(SEK[1], 1)])
ERROR: UndefVarError: `SEK` not defined

julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);


julia> gens = Vector{Hecke.RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];


julia> L = hermitian_lattice(E, gens, gram = D);


julia> G2 = genus(L)
Genus symbol for hermitian lattices
  over relative maximal order of Relative number field of degree 2 over number field
  with pseudo-basis
  (1, 1//1 * <1, 1>)
  (b, 1//1 * <1, 1>)
Signature:
  infinite place corresponding to (Complex embedding of number field) => 2
Local symbols:
  <2, a> => (-2, 1, +, -1)(2, 2, +, 1)
  <7, a + 4> => (0, 1, +)(1, 2, +)

Attributes

# base_fieldMethod.

base_field(G::HermGenus) -> NumField

Given a global genus symbol G for hermitian lattices over , return E.

source

# primesMethod.

primes(G::HermGenus) -> Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}

Given a global genus symbol G for hermitian lattices over , return the list of prime ideals of at which G has a local genus symbol.

source

# signaturesMethod.

signatures(G::HermGenus) -> Dict{InfPlc, Int}

Given a global genus symbol G for hermitian lattices over , return the signatures at the infinite places of K. For each real place, it is given by the negative index of inertia of the Gram matrix of the rational span of a hermitian lattice whose global genus symbol is G.

The output is given as a dictionary with keys the infinite places of K and value the corresponding signatures.

source

# rankMethod.

rank(G::HermGenus) -> Int

Return the rank of any hermitian lattice with global genus symbol G.

source

# is_integralMethod.

is_integral(G::HermGenus) -> Bool

Return whether G defines a genus of integral hermitian lattices.

source

# local_symbolsMethod.

local_symbols(G::HermGenus) -> Vector{HermLocalGenus}

Given a global genus symbol of hermitian lattices, return its associated local genus symbols.

source

# scaleMethod.

scale(G::HermGenus) -> AbsSimpleNumFieldOrderFractionalIdeal

Return the scale ideal of any hermitian lattice with global genus symbol G.

source

# normMethod.

norm(G::HermGenus) -> AbsSimpleNumFieldOrderFractionalIdeal

Return the norm ideal of any hermitian lattice with global genus symbol G.

source

Examples

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);


julia> gens = Vector{Hecke.RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];


julia> L = hermitian_lattice(E, gens, gram = D);


julia> G2 = genus(L);


julia> base_field(G2)
Relative number field with defining polynomial t^2 - a
  over number field with defining polynomial x^2 - 2
    over rational field

julia> primes(G2)
2-element Vector{AbsSimpleNumFieldOrderIdeal}:
 <2, a>
Norm: 2
Minimum: 2
basis_matrix
[2 0; 0 1]
two normal wrt: 2
 <7, a + 4>
Norm: 7
Minimum: 7
basis_matrix
[7 0; 4 1]
two normal wrt: 7

julia> signatures(G2)
Dict{InfPlc{AbsSimpleNumField, AbsSimpleNumFieldEmbedding}, Int64} with 1 entry:
  Infinite place corresponding to (Complex embedding corresponding to -1.4… => 2

julia> rank(G2)
3

Mass

Definition 4.2.1 [Kir16] Let be a hermitian lattice over , and suppose that is definite. In particular, the automorphism group of is finite. Let be a set of representatives of isometry classes in the genus of . This means that if is a lattice over in the genus of (i.e. they are in the same genus), then is isometric to one of the 's, and these representatives are pairwise non-isometric. Then we define the mass of the genus of to be

Note that since is definite, any lattice in the genus of is also definite, and the definition makes sense.

# massMethod.

mass(L::HermLat) -> QQFieldElem

Given a definite hermitian lattice L, return the mass of its genus.

source

Example

julia> Qx, x = polynomial_ring(FlintQQ, "x");


julia> f = x^2 - 2;


julia> K, a = number_field(f, "a", cached = false);


julia> Kt, t = polynomial_ring(K, "t");


julia> g = t^2 + 1;


julia> E, b = number_field(g, "b", cached = false);


julia> D = matrix(E, 3, 3, [1, 0, 0, 0, 1, 0, 0, 0, 1]);


julia> gens = Vector{Hecke.RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}[map(E, [(-3*a + 7)*b + 3*a, (5//2*a - 1)*b - 3//2*a + 4, 0]), map(E, [(3004*a - 4197)*b - 3088*a + 4348, (-1047//2*a + 765)*b + 5313//2*a - 3780, (-a - 1)*b + 3*a - 1]), map(E, [(728381*a - 998259)*b + 3345554*a - 4653462, (-1507194*a + 2168244)*b - 1507194*a + 2168244, (-5917//2*a - 915)*b - 4331//2*a - 488])];


julia> L = hermitian_lattice(E, gens, gram = D);


julia> mass(L)
1//1024


Representatives of a genus

# representativeMethod.

representative(g::HermLocalGenus) -> HermLat

Given a local genus symbol g for hermitian lattices over at a prime ideal of , return a hermitian lattice over whose completion at admits g as local genus symbol.

source

# inMethod.

in(L::HermLat, g::HermLocalGenus) -> Bool

Return whether g and the local genus symbol of the completion of the hermitian lattice L at prime(g) agree. Note that L being in g requires both L and g to be defined over the same extension .

source

# representativeMethod.

representative(G::HermGenus) -> HermLat

Given a global genus symbol G for hermitian lattices over , return a hermitian lattice over which admits G as global genus symbol.

source

# inMethod.

in(L::HermLat, G::HermGenus) -> Bool

Return whether G and the global genus symbol of the hermitian lattice L agree.

source

# representativesMethod.

representatives(G::HermGenus) -> Vector{HermLat}

Given a global genus symbol G for hermitian lattices, return representatives for the isometry classes of hermitian lattices in G.

source

# genus_representativesMethod.

genus_representatives(L::HermLat; max = inf, use_auto = true,
                                             use_mass = false)
                                                      -> Vector{HermLat}

Return representatives for the isometry classes in the genus of the hermitian lattice L. At most max representatives are returned.

If L is definite, the use of the automorphism group of L is enabled by default. It can be disabled by use_auto = false. In the case where L is indefinite, the entry use_auto has no effect. The computation of the mass can be enabled by use_mass = true.

source

Examples

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);


julia> SEK = unique([restrict(r, K) for r in infinite_places(E) if isreal(restrict(r, K)) && !isreal(r)]);


julia> G1 = genus([g1], [(SEK[1], 1)]);


julia> L1 = representative(g1)
Hermitian lattice of rank 3 and degree 3
  over relative maximal order of Relative number field of degree 2 over number field
  with pseudo-basis
  (1, 1//1 * <1, 1>)
  (b, 1//1 * <1, 1>)

julia> L1 in g1
true

julia> L2 = representative(G1)
Hermitian lattice of rank 3 and degree 3
  over relative maximal order of Relative number field of degree 2 over number field
  with pseudo-basis
  (1, 1//1 * <1, 1>)
  (b, 1//1 * <1, 1>)

julia> L2 in G1, L2 in g1
(true, true)

julia> length(genus_representatives(L1))
1

julia> length(representatives(G1))
1

Sum of genera

# direct_sumMethod.

direct_sum(g1::HermLocalGenus, g2::HermLocalGenus) -> HermLocalGenus

Given two local genus symbols g1 and g2 for hermitian lattices over at the same prime ideal of , return their direct sum. It corresponds to the local genus symbol of the -adic completion of the direct sum of respective representatives of g1 and g2.

source

# direct_sumMethod.

direct_sum(G1::HermGenus, G2::HermGenus) -> HermGenus

Given two global genus symbols G1 and G2 for hermitian lattices over , return their direct sum. It corresponds to the global genus symbol of the direct sum of respective representatives of G1 and G2.

source

Examples

julia> Qx, x = QQ["x"];


julia> K, a = number_field(x^2 - 2, "a");


julia> Kt, t  = K["t"];


julia> E, b = number_field(t^2 - a, "b");


julia> OK = maximal_order(K);


julia> p = prime_decomposition(OK, 2)[1][1];


julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);


julia> SEK = unique([restrict(r, K) for r in infinite_places(E) if isreal(restrict(r, K)) && !isreal(r)]);


julia> G1 = genus([g1], [(SEK[1], 1)]);


julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);


julia> gens = Vector{Hecke.RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];


julia> L = hermitian_lattice(E, gens, gram = D);


julia> g2 = genus(L, p);


julia> G2 = genus(L);


julia> direct_sum(g1, g2)
Local genus symbol for hermitian lattices
  over relative maximal order of Relative number field of degree 2 over number field
  with pseudo-basis
  (1, 1//1 * <1, 1>)
  (b, 1//1 * <1, 1>)
Prime ideal: <2, a>
Jordan blocks (scale, rank, det, norm):
  (-2, 1, +, -1)
  (0, 1, +, 0)
  (2, 4, -, 1)

julia> direct_sum(G1, G2)
Genus symbol for hermitian lattices
  over relative maximal order of Relative number field of degree 2 over number field
  with pseudo-basis
  (1, 1//1 * <1, 1>)
  (b, 1//1 * <1, 1>)
Signature:
  infinite place corresponding to (Complex embedding of number field) => 3
Local symbols:
  <2, a> => (-2, 1, +, -1)(0, 1, +, 0)(2, 4, -, 1)
  <7, a + 4> => (0, 4, +)(1, 2, +)

Enumeration of genera

# hermitian_local_generaMethod.

hermitian_local_genera(E::NumField, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, rank::Int,
                       det_val::Int, min_scale::Int, max_scale::Int)
                                                  -> Vector{HermLocalGenus}

Return all local genus symbols for hermitian lattices over the algebra E, with base field , at the prime idealp of . Each of them has rank equal to rank, scale -valuations bounded between min_scale and max_scale and determinant p-valuations equal to det_val, where is a prime ideal of lying above p.

source

# hermitian_generaMethod.

hermitian_genera(E::NumField, rank::Int,
                              signatures::Dict{InfPlc, Int},
                              determinant::Union{Hecke.RelNumFieldOrderIdeal, Hecke.RelNumFieldOrderFractionalIdeal};
                              min_scale::Union{Hecke.RelNumFieldOrderIdeal, Hecke.RelNumFieldOrderFractionalIdeal} = is_integral(determinant) ? inv(1*order(determinant)) : determinant,
                              max_scale::Union{Hecke.RelNumFieldOrderIdeal, Hecke.RelNumFieldOrderFractionalIdeal} = is_integral(determinant) ? determinant : inv(1*order(determinant)))
                                                                                                             -> Vector{HermGenus}

Return all global genus symbols for hermitian lattices over the algebraE with rank rank, signatures given by signatures, scale bounded by max_scale and determinant class equal to determinant.

If max_scale == nothing, it is set to be equal to determinant.

source

Examples

julia> K, a = cyclotomic_real_subfield(8, "a");


julia> Kt, t = K["t"];


julia> E, b = number_field(t^2 - a * t + 1);


julia> p = prime_decomposition(maximal_order(K), 2)[1][1];


julia> hermitian_local_genera(E, p, 4, 2, 0, 4)
15-element Vector{HermLocalGenus{Hecke.RelSimpleNumField{AbsSimpleNumFieldElem}, AbsSimpleNumFieldOrderIdeal}}:
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers
 Local genus symbol for hermitian lattices over the 2-adic integers

julia> SEK = unique([restrict(r, K) for r in infinite_places(E) if isreal(restrict(r, K)) && !isreal(r)]);


julia> hermitian_genera(E, 3, Dict(SEK[1] => 1, SEK[2] => 1), 30 * maximal_order(E))
6-element Vector{HermGenus{Hecke.RelSimpleNumField{AbsSimpleNumFieldElem}, AbsSimpleNumFieldOrderIdeal, HermLocalGenus{Hecke.RelSimpleNumField{AbsSimpleNumFieldElem}, AbsSimpleNumFieldOrderIdeal}, Dict{InfPlc{AbsSimpleNumField, AbsSimpleNumFieldEmbedding}, Int64}}}:
 Genus symbol for hermitian lattices of rank 3 over relative maximal order of Relative number field
with pseudo-basis
(1, 1//1 * <1, 1>)
(_$, 1//1 * <1, 1>)
 Genus symbol for hermitian lattices of rank 3 over relative maximal order of Relative number field
with pseudo-basis
(1, 1//1 * <1, 1>)
(_$, 1//1 * <1, 1>)
 Genus symbol for hermitian lattices of rank 3 over relative maximal order of Relative number field
with pseudo-basis
(1, 1//1 * <1, 1>)
(_$, 1//1 * <1, 1>)
 Genus symbol for hermitian lattices of rank 3 over relative maximal order of Relative number field
with pseudo-basis
(1, 1//1 * <1, 1>)
(_$, 1//1 * <1, 1>)
 Genus symbol for hermitian lattices of rank 3 over relative maximal order of Relative number field
with pseudo-basis
(1, 1//1 * <1, 1>)
(_$, 1//1 * <1, 1>)
 Genus symbol for hermitian lattices of rank 3 over relative maximal order of Relative number field
with pseudo-basis
(1, 1//1 * <1, 1>)
(_$, 1//1 * <1, 1>)

Rescaling

# rescaleMethod.

rescale(g::HermLocalGenus, a::Union{FieldElem, RationalUnion})
                                                          -> HermLocalGenus

Given a local genus symbol G of hermitian lattices and an element a lying in the base field E of g, return the local genus symbol at the prime ideal p associated to g of any representative of g rescaled by a.

source

# rescaleMethod.

rescale(G::HermGenus, a::Union{FieldElem, RationalUnion}) -> HermGenus

Given a global genus symbol G of hermitian lattices and an element a lying in the base field E of G, return the global genus symbol of any representative of G rescaled by a.

source